自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Baimoc

格物致知,知行合一

  • 博客(214)
  • 资源 (5)
  • 收藏
  • 关注

原创 白墨的生物信息自学之路

进入21世纪后,组学数据井喷式产出,随之而来的问题是如何处理这些数据,挖掘背后隐藏的价值。人们想到利用包括计算机,物理学,数学,统计学在内学科的优势去解析这些大数据,随之催生出一门新的交叉学科,这就是生物信息学。这门学科为生物进化,物种分类,育种技术,药物设计等领域起到巨大的推动作用。不仅使我们更加全面的认识生命,而且随之带来了丰厚的社会效益。这里记录了我学习生物信息时,在平坦道路上曲折前行的步伐。可以为打算学,正在学生物信息的同学提供一些参考,少走一些弯路。让我们一起披荆斩棘,乘风破浪。这.

2020-12-16 10:50:05 1471 9

原创 scanpy 单细胞分析包图文详解 01 | 深入理解 AnnData 数据结构

一、环境准备:搭建 Python 高效开发环境: Pycharm + Anaconda二、安装 scanpypip install scanpy三、AnnData1、AnnData 介绍与结构AnnData 是用于存储数据的对象,一般作为 scanpy 的数据存储格式。主要由以下几部分构成:功能数据类型adata.X矩阵数据numpy,scipy sparse,matrixadata.obs观察值数据pandas dataframeadata.v

2021-04-23 20:53:13 105 1

原创 详解 R 语言的PCA与TSNE的降维聚类

为了查看降维聚类的可视化效果,我们先用相似样本降维聚类,然后使用具有差异的样本查看聚类效果。同时使用 PCA 与 TSNE 来观察两种不同方法的聚类效果。文章目录一、相似样本的降维聚类1、载入所需的包2、构建两个相似样本数据集3、绘制热图4、绘制PCA5、绘制TSNE二、差异样本的降维聚类1、构建第三个具有差异的数据集2、绘制热图3、绘制PCA4、绘制TSNE全部代码一、相似样本的降维聚类1、载入所需的包rm(list=ls())library(pheatmap)library(Rtsne)

2021-04-22 10:49:45 96

原创 NCBI 上传测序数据

1、登录或注册用户网址:https://www.ncbi.nlm.nih.gov/account/2、进入SRA网址:https://submit.ncbi.nlm.nih.gov/向下滚动,找到Sequence Read Archive (SRA)工具,点击Submit2、新建提交3、按要求填写信息4、使用ascpascp -i /mnt/h/work/aspera.openssh -QT -l100m -k1 -d /mnt/h/work/ncbi_upload/raw/ sub

2021-04-14 15:30:17 103

原创 转录组自动化分析流程搭建及使用

这次分析流程搭建使用基于Nextflow 的 nf-core,该工具可以实现自动化的转录组上游分析。官网:https://nf-co.re/rnaseqGitHub:https://github.com/nf-core/rnaseq安装 nf-core rnaseq可以使用Git clone,也可以下载好解压到流程目录安装Nextflowcurl -s https://get.nextflow.io | bash检测版本是否符合nf-core使用,可以升级nextflow self-upd

2021-03-22 19:35:09 147

原创 Excel 做统计学分析

数据分析插件1、进入 Excel 点击选项2、在加载项中点击转到3、打开分析工具库扩展4、选择数据标签页,点击数据分析5、选择适合数据的分析方法,这里以方差分析为例6、配置分析需要的选项在输入区域输入对应的数据,利用鼠标指针框选带有样本分组标志的数据集,比如下图这样选中标志位于第一行,用于标记分组名称α(A)是显著性水平,0.05代表95%的可信度选中输出区域,将输出结果打印在Excel中,或者可以选新建工具表组7、最后,生成对应的分析结果表里

2021-03-19 20:37:05 193 2

转载 Web开发路线图(2020)

通用技能前端开发后端开发DevOps 路线图原文:https://github.com/ccloli/developer-roadmap-zh-CN

2021-03-09 09:39:59 256

原创 图解三代测序(SMRT Sequencing)

文章目录一、基本原理二、构建文库三、测序芯片四、上机测序五、测序模型1、Circular Consensus Sequencing (CCS)2、Continuous Long Read (CLR) Sequencing六、其他影响因素1、GC bias 影响2、读长的限制因素3、测序通量目前主流三代测序平台除了Oxford 家的 Nanopore,还有 Pacific Biosciences(简称 PacBio)公司的 Single Molecule Real-Time(SMRT)Sequencing。

2021-03-03 19:57:37 495 1

原创 最新最全 VSCODE 插件推荐(2021版)

文章目录一、主题及图标GitHub ThemeMaterial ThemeMaterial Icon Themevscode-icons二、功能强化settings syncwakatimePolacodeChinese (Simplified) Language Pack for Visual Studio Code三、Git 集成插件GitHub Pull requestsGit GraphCodeStream: GitHub, GitLab, Bitbucket PRs and Code Review

2021-02-20 11:38:07 2713 6

原创 如何在 VSCODE 中高效使用 R 语言 (图文详解)

VSCODE 配置 R一、功能特性展示之前一直在用 Rstudio 来编写 R,也尝试用过 Pycharm 配置 R 环境。但是由于现在需求要同时满足 Python,R 和网站要同时开发,为了避免来回切换不同的IDE,重复配置,还有路径一堆麻烦事。今天我们先介绍在 VSCODE 中配置 R 环境,看看它有什么特性足以让我们更改自己习惯。1、绘图2、查看及搜索数据3、多行输出4、鼠标悬停,显示函数文档5、鼠标悬停,显示变量信息6、格式化代码二、材料vscodeRvscode

2021-02-17 20:43:39 1419 12

原创 pip 报错:Can‘t connect to HTTPS URL because the SSL module is not available

windows:将 D:\Python\anaconda3\Library\bin 加入环境变量重启shellLinux:https://stackoverflow.com/questions/41328451/ssl-module-in-python-is-not-available-when-installing-package-with-pip3

2021-02-17 12:02:20 41

原创 解决:cnpm : 无法加载文件 ...\cnpm.ps1,因为在此系统上禁止运行脚本

解决流程1、快捷键Win+S打开搜索框,搜索 PowerShell2、选择以管理员身份运行3、赋权限输入set-ExecutionPolicy RemoteSigned更改权限为 A检测是否设置完成get-ExecutionPolicy

2021-02-08 14:16:32 59

原创 Hi-C 测序技术(图解详解)

文章目录一、介绍二、原理及步骤三、三维基因组检测技术比较1、C技术3C(一对一)4C(一对多)5C(多对多)Hi-C(全部互作)2、基于免疫沉淀技术ChIP-loopChIA-PET四、总结一、介绍Hi-C 技术源于基因组捕获技术(Chromosome conformation capture,3C),用于分析染色质三维空间结构的一种测序方法。1关于什么是三维基因组,可以参考:一文读懂三维基因组用途:量化在三维空间中基因组的染色质间交联(cross-linked chromatin)解析全基因

2021-02-06 14:33:32 1696 1

原创 图解三代测序(Nanopore)

一、测序原理先介绍 Nanopore 测序中的几位主角:Reader :在自然界中,有一种可以嵌入到细胞膜中作为离子或分子通道的跨膜蛋白,具有天然的蛋白纳米孔。经过人为基因工程修饰后,得到的就是 Nanopore 测序所需的 Reader 蛋白。Membrane:Reader 蛋白会被嵌入到高电阻率的 Membrane (人工合成的多聚物膜),膜两侧是离子溶液,在两侧加不同的电位,离子就会在孔中流动,形成电流。Motor:在 Nanopore 文库构建时,需要在接头上连接一种动力蛋白,用于将DN

2021-02-03 19:31:37 1070 1

原创 一文读懂三维基因组

文章目录一、细胞核 *Nucleus*二、染色质疆域 *Chromosome Territory,CT*三、染色质区室 *A/B compartments*四、拓扑结构域 *Topologically associating Domains,TAD*五、层关联域 *Lamina Associating Domains,LAD*六、核仁关联域 *Nucleolar Associating Domains,NAD*七、染色质环 *Chromatin loops*每个人体内都有着两米长的DNA,它是如何紧密折叠

2020-12-25 16:56:37 942

原创 Python 自动化提取基因的 CDS

文章目录一、环境准备及背景介绍二、Python 实现三、使用示例数据介绍1、提取单个基因CDS2、提取多个基因CDS2、提取全部基因CDS一、环境准备及背景介绍Python 开发环境:搭建 Python 高效开发环境: Pycharm + AnacondaBiopython 序列处理:生物信息中的 Python 02 | 用biopython解析序列示例 Genbank 数据:下载链接Genbank 数据介绍:生物信息中的Python 05 | 从 Genbank 文件中提取 CDS 等其他特征序

2020-12-21 09:59:27 498

原创 Markdown 数学公式写法与速查表

文章目录一、公式写法二、基础公式三、关系运算符四、集合运算符五、戴帽符号六、连线符合七、矩阵八、分段函数九、希腊字母一、公式写法公式语法:$$H(X) = -\sum{P(x)logP(x)}H(X)=−∑P(x)logP(x)H(X) = -\sum{P(x)logP(x)}H(X)=−∑P(x)logP(x)带标号的公式语法:$$H(X) = -\sum{P(x)logP(x)} \tag1$$H(X)=−∑P(x)logP(x)(1)H(X) = -\sum{P(x)logP(x)

2020-12-12 10:52:40 184

原创 Linux 远程复制文件和目录

一、命令格式:scp 文件/目录路径名 root@ip地址:文件/目录路径名1、从远程服务器复制文件到本地scp root@183.175.59.73:/home/data ./data/2、从本地文件复制到远程服务器scp ./data/ root@183.175.59.73:/home/data3、从远程服务器复制目录到本地scp -r root@183.175.59.73:/home/data ./data/4、从本地目录复制到远程服务器scp -r ./data/ root@

2020-11-24 10:29:18 190 1

原创 图解表观遗传学 | 组蛋白修饰

一、组蛋白结构在了解组蛋白修饰前,先复习一下幼儿园学过的组蛋白结构。我们都知道在细胞核中的染色体是高度压缩的,而折叠时DNA缠绕的就是组蛋白。将组蛋白区域放大,我们就会看到这样一串念珠,组蛋白被一根DNA序列串起来。为了方便研究,我们将一个组蛋白和其附近 147bp DNA片段,叫一个核小体。也就是说,核小体 = 组蛋白 + DNA(147bp)把组蛋白拆开来,它其实有八个部分来构成:组蛋白八聚体 = 2个H2B + 2个H2A + 2个H3 + 2个H4下面是检测到的组蛋白三维结构

2020-11-22 16:41:26 2139

原创 一文读懂 ChIPseq

一、介绍ChIP-seq,测序方法ChIP 指染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP),seq 指的是二代测序方法作用:识别蛋白质与DNA互相作用情况原理:染色质免疫共沉淀 + 二代测序应用:常用于转录因子结合位点和组蛋白修饰位点的研究二、测序原理1、使用甲醛将目标蛋白与染色质交联固定起来2、从细胞裂解液分离基因组DNA,通过超声打断DNA为一定长度的小片段3、添加与目标蛋白质特异的抗体,该抗体与目标蛋白形成免疫沉淀免疫结

2020-11-22 16:39:35 533

原创 Sublime 究极技巧3 - 在线安装插件包及常用插件

在线安装插件包1. 安装PackagesControlCrtl+~打开Console,输入:importurllib2,os;pf='PackageControl.sublime-package';ipp=sublime.installed_packages_path();os.makedirs(ipp)ifnotos.path.exists(ipp)elseNo

2020-11-06 10:08:02 2862 4

原创 UCSC 基因组浏览器配置详解

一、配置参数UCSC基因组浏览器:传送门1、点击配置2、进入配置页面:点击刚刚运行的文件 BedGraph Format2、轨迹配置页面Type of graph :默认以bar,条形图来显示,选择point会以点或线来显示Track height :设置图形高度,像素为单位Data view scaling (boxed in red) :如果选中 use vertical viewing range setting选项,将使用 Vertical viewing range设置

2020-10-29 20:43:07 588

原创 生信格式 | BedGraph(基因组浏览器绘制)

生信文件格式 | BedGraph(基因组浏览器绘制)一、特点及适用场景:后缀名.bedGraph允许以跟踪格式显示连续值的数据对于概率分数和转录组数据很有用如果bedGraph数据集非常大(超过5000万行 ),则可以使用该bedGraphToBigWig程序将其转换为bigWig格式bedGraph文件不能转换为 wig 文件。使用bigWigToWig将 bigWig 转换为bedGraph文件二、格式一共包含四列:chromA chromStartA chromEndA

2020-10-29 20:41:39 703

原创 生信格式 | bigwig,bw (基因组浏览器绘制)

一、特点及适用场景:后缀名:.bw,.bigwigbigWig文件为索引二进制格式主要用于密集,连续的数据在处理大型数据集时,bigWig文件的显示性能比常规的wig文件快得多数据必须是连续的并且由大小相等的元素组成,如果数据是稀疏或包含大小不同的元素时,请使用bedGraph格式二、wig 转 bigwigBigWig文件可以使用wigToBigWig程序从wiggle(wig)格式文件转换得到1、 创建 wig 文件wig 文件转换为bigWig文件时,必须为每个数据轨迹创建一个单

2020-10-29 20:01:57 1646

原创 生信格式 | wig(基因组浏览器绘制)

文章目录介绍一、variableStep 格式1、特点及适用场景:2、格式:3、例子:二、fixedStep 格式1、特点及适用场景:2、格式:3、例子:三、数据值例子Wig,BigWig,BedGraph,这是几种在基因组浏览器上绘制图形的数据格式。不同的数据格式可以满足不同的显示需求,下面我们一一来看:介绍wig 文件全称叫 Wiggle Track Format, 用来绘制基因组上的图形轨迹的文件格式。wig 格式是较老的格式,用来显示密集且连续的数据,比如GC含量,概率分数,转录组数据等。

2020-10-29 19:41:38 587

原创 生信软件 | Samtools(SAM文件处理工具)

介绍SAM(sequence Alignment/mapping) 数据格式是目前高通量测序中存放比对数据的标准格式转换 BAM 与 SAM 格式比对文件排序,建立fastq索引安装conda install -y samtools这里需要安装Conda (这是一款用于安装多数生物信息分析软件的管理软件,重要的是可以解决软件依赖问题) : Conda 安装使用图文详解使用1、常用的三个步骤转换 SAM 格式为 BAM 格式samtools view -S SRR00000.sam

2020-10-27 16:38:34 523

原创 从零开始学统计 11 | 理解置信区间

置信区间假设现在测量了12个小鼠体重的值,注意这里只测量了12只小鼠(样本),而不是地球上的每一只小鼠(总体)取12个测量值,计算平均值,注意这里是样本均值,而不是总体均值(地球上所有小鼠的均值)理解样本均值与总体均值:https://zhenglei.blog.csdn.net/article/details/108392410但是,我们可以通过 Bootstrap 方法,确定一个比较合理的均值范围来代表小鼠总体均值随机选12个小鼠体重值Boostrap 是可放回抽样,意味着抽样时可

2020-10-24 12:27:44 332

原创 从零开始学统计 10 | 通俗易懂的 P 值

文章目录怎么计算P值单尾与双尾的P值抽样分布单一分布中抽样两个独立分布中抽样怎么计算P值抛两次硬币,计算两次都为正(H)的概率计算的P值由三个部分组成:在观察到,在随机事件中发生的概率与之概率相等的事件的概率任何比观察的更罕见的事件发生概率抛 5 次硬币,计算都为正(H)的概率,与P值概率为P值由三部分组成:5个正面5个反面没有比这个事件更小的概率事件所以计算得到可以看到 p 值不小于 0.05(显著性阈值)计算四个正面,一个反面的概率:p 值由三部分组成

2020-10-24 12:23:36 256

原创 玩转 Windows 自带的 Linux 子系统 WSL(图文指南)

学计算机离不开 Linux 系统,当然,更离不开Windows。但是,二者从操作到核心的不同,貌似让鱼和熊掌不可兼得。但是!微软已经拿出了一款让鱼和熊掌兼得的方案 WSL (Windows Subsystem for Linux),也就是 Windows 系统中自带 Linux 子系统。这比其他方案的优势在于:不会产生传统虚拟机或双启动设置开销实现 Windows 系统与 Linux 系统磁盘资源的共享相对其他 Bash,更接近原生 Linux 系统网络设置等配置与 Windows 系统保持

2020-09-23 19:33:04 1264

原创 Linux 查看文件,目录,磁盘空间占用容量

文章目录文件大小目录大小磁盘占用文件大小列出当前目录所有文件的大小ls -alh过滤当前目录下大于10M的文件find ./ -type f -size +10M -print0 | xargs -0 ls -lh | sort -nr目录大小当前目录的大小du -sh当前目录下各目录大小du -sh *递归查询当前目录所有文件夹大小du -ah磁盘占用df -lh...

2020-09-21 09:17:15 301

原创 一文读懂DNA甲基化及BS-seq

一、什么是DNA甲基化DNA甲基化是一个生物过程,它会在在DNA分子中引入甲基化基团,但是甲基化并不会改变序列本身,而会改变DNA片段的活性。在哺乳动物中,DNA甲基化对于正常发育必不可少,而且与很多生物学现象有密切联系,包括基因组印迹,X染色体失活,转座因子招募,衰老和致癌作用。胞嘧啶甲基化是在真核生物和原核生物普遍存在的,而且甲基化的速率在物种之间有很大的差异。最常见的是在胞嘧啶的5号碳位置,在酶和底物的作用下,引入一个甲基基团,变成了5甲基胞嘧啶(5mC),从而改变了它的活性。腺嘌呤甲基化

2020-09-10 10:36:23 2736 1

原创 从零开始学统计 09 | 对数转换

一、对数转换左边是普通数轴,利用log2函数将左边的数据取它的指数,拿到对数轴同样获取对数轴的负值:二、什么时候用对数转换涉及到倍数变化的时候,就应该使用对数比例尺。在左侧数值虽然是分别大8倍,小8倍的差别,但是在数轴上并不对称。但是经过转换后,这两个倍数差异离中心0是等距的,倍数变化就被明显的展示出来了。这可以使正负倍数的变化出现在一个对称的尺度上。三、总结Log 函数只是去剥离指数对数比例尺对于倍数变化非常有用对数的平均值,也叫几何平均值(Geometric Mean),对

2020-09-03 21:06:25 395

原创 从零开始学统计 08 | 中心极限定理

中心极限定理一、计算平均值的分布1. 均匀分布从0-1选任意值,概率都相等计算一组数据集的平均值,在右边绘制直方图在搜集更多的样本,每增加一次样本,绘制一个直方图增加更多的样本会发现平均值的直方图,正好是我们之前学到的正态分布。需要注意:这些平均值是用均匀分布的数据计算出来的但是,平均值本身不是均匀分布的,而是正态分布的。2. 指数分布计算一组数据的平均值,在右边绘制直方图继续增加样本量,我们就会得到一个熟悉的分布需要注意:这些平均值是用指数分布的数据计算出来的

2020-09-03 20:57:12 200

原创 从零开始学统计 07 | 标准误差

一、标准误差假设测量一个基因的五个表达量:**标准偏差(Standard Deviation)**量化了一组测量值中的变化程度同样的实验做五次,每次实验用不同的样本:把五个样本的平均值放在一个数轴:可以计算得到两个值:对五个样本的平均值取平均值,计算得到的标准偏差就是标准误差。**标准误差(Standard Error)**量化了多组测量值均值的变化程度不难发现:标准偏差量化了一组测量值中的变化程度标准误差量化了多组测量值均值的变化程度二、标准误差的表示三个样本绿色:

2020-09-03 20:53:25 375

原创 从零开始学统计 06 | 样本容量和有效样本容量

一、样本容量研究不同个体的表达量,样本容量(Sample size):N=3研究不同个体的表达量,样本容量(Sample size):N=3技术重复只能告诉我们该测量基因表达的方法准确性,并不会反应个体间的区别。研究一个方法的准确性,样本容量(Sample size):N=4二、有效样本容量假设,蓝色小人是一对双胞胎,他们有着高度相似的基因组,但很明显又是两个不同的个体。那么现在不能简单的用样本容量,需要用到有效样本容量来评价。假设,双胞胎的相关性为0.7,有效样本容量公式:代入数

2020-09-03 20:48:02 519

原创 从零开始学统计 05 | 技术重复和生物学重复

技术重复和生物学重复一、技术重复一个个体,一个样本,测量多次一个个体,三个样本,每个样本测量以上两种情况都是技术重复,特点:技术重复只是对一个人重复相同的实验给出样本的基因表达的精确测量结果,但不能把结果类推到更广泛的人群中可以得到测量基因表达的准确性,比如,每个技术重复测定后的值都很不相同,那么我们就不能相信测得的任何一个样本应用:第一种技术重复,可以检测样本测量方法稳定性等,可以告诉大家新测量方法有多好。第二种技术重复,只告诉我们个体的信息,而不是方法,因为得到的差异有可能来

2020-09-03 20:45:21 695

原创 从零开始学统计 04 | 协方差与相关性分析

一、老板的任务老板今天又给一个任务:计算肝脏细胞中 X 基因与 Y 基因的关系。现在,两个基因在各个细胞中的表达值都有了。绘制不同细胞中 X,Y 基因的表达值在坐标轴上。计算 X 基因和 Y 基因在5个细胞中的均值,标准差。因为这些测量值都是来自同一个细胞,所以我们可以成对来看:那么这样成对的测量可以告诉我们哪些信息呢?现在,先将一对细胞连接,绘制一个点绘制完成,我们发现,X 基因相对较低的细胞对应的 Y 基因的值也较低,两个基因出现步调一致的表达情况,这可以用一条线来表示:不难

2020-09-03 20:42:41 253

原创 从零开始学统计 03 | 均值,方差,标准差

均值现在使用实际的2400亿个细胞计算均值,也就是总体均值(Population Mean)估计均值(Estimated Mean):统计学中,用符号x-bar来表示估计平均值,也叫样本平均值(Sample Mean)使用希腊符号μ来表示总体均值(Population Mean)可以从上图看到,样本均值与总体均值不同,但是随着测量越来越多的数据,x-bar会越来越接近μ。方差、标准差方差和标准差,代表数据是如何在总体均值周围分布的,计算总体方差的公式:x-μ, 代表从每个数据

2020-09-03 20:32:25 391

原创 从零开始学统计 02 | 总体参数

老板的任务一切的噩梦来自于,老板给你的任务:计算所有肝脏细胞中X基因表达量大于30的可能性。现在,假设已经拿到在实际的肝脏中大约 2400 亿个细胞的X基因表达值。使用直方图绘制,可以看到X基因大多表达量是 10 - 30使用直方图求解现在我们计算一个肝细胞的X基因表达量大于30的可能性,需要两个值:X 基因表达量大于30的细胞数总细胞数利用小学除法:根据观察值,代入使用正态分布求解将刚刚的直方图趋势,对应于分布,可以得到均值为20,标准差为10的正态分布曲线现在,换个

2020-09-03 20:28:39 180

原创 从零开始学统计 01 | 神奇的正态分布

正态分布介绍这是在统计学中大名鼎鼎的一种分布,最早由德国的天文学家Moivre提出。后来,德国数学家高斯(Gauss)首先将其应用于天文学研究,故正态分布也叫“高斯分布”。高斯的这项工作对后世的科学研究影响极大,以至于德国10马克的钞票上印的是高斯头像和正态分布。正态分布在这个世界很常见,这会在后面的文章中谈到。举个栗子下图展示了婴儿和成人身高分布曲线。曲线形状的不同代表,成年人的身高差异的可能性比婴儿更多。可以直观的看到:不管曲线长相如何,正态分布总是集中在平均值区域,也就是数值几种在

2020-09-03 20:08:11 373

SARS-CoV-2.gb

基因序列分析例子数据

2020-12-21

aspera-connect-3.7.4.147727-linux-64.tar.gz

用于极速下载aspera支持的资源,生物信息用于NCBI,EBI基因组下载

2018-05-09

生物信息聚类热图_示例数据

用于‘生物信息可视化 01 | 聚类热图’的例子数据,其中数据均为虚拟数据,与实际生物学过程无关,原文地址:https://blog.csdn.net/u011262253/article/details/100638123

2019-09-08

Trimmomatic Manual

Trimmomati 用于去除 Illumina平台的FASTQ序列中的Adapter,根据碱基质量值修整FASTQ序列文件

2019-03-26

对仿QQ的头像选择弹出的对话框,酷似!

自定义的对话框,eclipse下运行通过

2015-06-19

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除